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Abstract

This paper reports a new concept for maximizing heat transfer density in assemblies of cylinders in cross-flow: the

use of cylinders of several sizes, and the optimal placement of each cylinder in the assembly. The heat transfer is by

laminar forced convection with specified overall pressure difference. The resulting flow structure has multiple scales that

are distributed nonuniformly through the available volume. Smaller cylinders are placed closer to the entrance to the

assembly, in the wedge-shaped flow regions occupied by fluid that has not yet been used for heat transfer. The paper

reports the optimized flow architectures and performance for structures with 1, 2 and 3 cylinder sizes, which correspond

to structures with 1, 2 and 4 degrees of freedom. The heat transfer rate density increases (with diminishing returns) as

the optimized structure becomes more complex. The optimized cylinder diameters are relatively robust, i.e., insensitive

to changes in complexity and flow regime (pressure difference). The optimized spacings decrease monotonically as the

driving pressure difference increases. The multi-scale flow architectures optimized in this paper have features and qual-

ities similar to tree-shaped (dendritic) designs, where the length scales are numerous, hierarchically organized, and non-

uniformly distributed through the available space.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The maximization of the rate of heat transfer in a

given space has been the driving force behind many of

the miniaturization, augmentation and unconventional

ways of designing structures for heat and fluid flow.

The same trend is driven by the need to install more

and more heat generating components into a given

space. This activity has been described recently as a prin-

ciple-based �constructal� process [1] of generating flow

architecture in the pursuit of global objective, subject
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to global constraints. The flow configuration is the

unknown.

The constructal strategy is to endow the flow config-

uration with the freedom to change, and to search

systematically for paths that lead to optimal or near-

optimal flow configurations. Strategy and systematic

search mean that architectural features that have been

found beneficial in the past can be incorporated and

compounded into more complex flow structures of the

present. Strategy is important not only for accelerating

the search in a design space that is infinite, but also

for identifying the near-optimal designs that perform

at nearly the same level as the absolute best. It is impor-

tant to know the highest performance level and the fron-

tiers of diminishing returns beyond which the search

should be terminated. It is important to be reminded
ed.
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Nomenclature

Be pressure drop number, Eq. (11)

D0 diameter

k thermal conductivity, W/mK

Ld downstream flow length, m

Lu upstream flow length, m

P pressure, Pa

Pr Prandtl number

q total heat transfer, W

~q dimensionless heat transfer density, Eq. (12)

q00 heat transfer rate per unit length, W/m

q000 heat transfer rate density, W/m3

S0 spacing between D0 cylinders

T temperature, K

Tw wall temperature, K

T0 inlet temperature, K

u,v velocity components, m/s

x,y cartesian coordinates, m

Greek symbols

a thermal diffusivity, m2/s

DP pressure difference, Pa

h dimensionless temperature

l viscosity, kg/sm

m kinematic viscosity, m2/s

q density, kg/m3

/ porosity

Subscripts

m maximized once

2m maximized twice

3m maximized three times

4m maximized four times

opt optimum

w wall

Superscript

(	) dimensionless variables, Eqs. (5 and 6)
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that when the flow structure is complex, there are many

winning structures on the podium of highest perfor-

mance [2].

One class of heat and fluid flow structures that have

been optimized in this spirit are the configurations in

which optimal spacings exist: stacks of parallel plates,

staggered plates, cylinders in cross-flow, and pin fin ar-

rays with impinging flow. Optimal spacings have been

determined for natural convection, and for forced con-

vection with specified overall pressure difference. This

work has been reviewed in Refs. [1] and [3], and is not

reviewed again here. It has one important characteristic

that links all the optimized configurations: the optimized

spacing is a single length scale that is distributed uni-

formly throughout the given volume.

In this paper we propose to go beyond the single-spac-

ing philosophy, and to explore the idea of optimizing

flow structures with more than one free length scale. This

direction of thought has a lot in common with the most

recent work on tree-shaped flow structures [1–14], where

the length scales are numerous, hierarchically organized

and nonuniformly distributed through the available

space. In the present paper, the multiple length scales

are the diameters and spacings between cylinders in

cross-flow. The largest cylinder diameter defines the

overall extent of the flow space. The nonuniform distri-

bution of these length scales means that progressively

smaller cylinders are placed near the entrance to the

assembly, i.e. in flow regions inhabited by fluid that has

not participated in the global heat transfer enterprise.
2. Row of cylinders of one size

Consider the row of parallel cylinders shown in Fig.

1. The height of the assembly H and the cylinder diam-

eter D0 are fixed. The flow regime is driven by the pres-

sure difference DP, which is maintained across the

assembly. The first objective is to select the number of

cylinders in the bundle, or the cylinder to cylinder spac-

ing, S0, such that the overall thermal conductance be-

tween the cylinder and the ambient air is maximal.

The flow is assumed steady, laminar, incompressible

and two-dimensional. All the thermophysical properties

are assumed constant.

The lower part of Fig. 1 shows the elemental volume

that characterizes this assembly. Symmetry allows us to

study only half of the channel formed between two

cylinders. The computational domain contains the flow

region of length D0, plus an upstream section Lu�
1
2
ðD0 þ S0Þ, and a downstream section Ld � 1

2
ðD0 þ S0Þ.

The lengths Lu and Ld were selected based on accuracy

tests described later in this section.

The conservation equations for mass, momentum

and energy require

ou
ox

þ ov
oy

¼ 0 ð1Þ

u
ou
ox

þ v
ou
oy

¼ � 1

q
oP
ox

þ mr2u ð2Þ



Fig. 1. Single row of cylinders in cross-flow, and the computational domain.
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u
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þ mr2v ð3Þ

u
oT
ox

þ v
oT
oy

¼ ar2T ð4Þ

where $2 = o2/ox2 + o2/oy2. The coordinate system (x,y)

and velocity components (u,v) are defined in Fig. 1. The

variables are defined in the Nomenclature. The work of

solving Eqs. (1)–(4) numerically is based on a dimen-

sionless formulation using the variables

ð~x;~yÞ ¼ ðx; yÞ
D0

ð~u;~vÞ ¼ ðu; vÞ
DPD0=l

ð5Þ

eT ¼ T � T1

T w � T1
P ¼

eP
DP

ð6Þ

where Tw and T1 are the temperatures of the cylinder

wall and the free stream. The resulting dimensionless

equations are

o~u
o~x

þ o~v
o~y

¼ 0 ð7Þ

Be
Pr

~u
o~u
o~x

þ ~v
o~u
o~y

� �
¼ � oeP

oex þr2~u ð8Þ
Be
Pr

~u
o~v
o~x

þ ~v
o~v
o~y

� �
¼ � oeP

o~y
þr2~v ð9Þ

Be ~u
o~T
o~x

þ ~v
o~T
o~y

� �
¼ r2~T ð10Þ

where Pr is the Prandtl number m/a, and Be is the dimen-

sionless pressure drop number that Refs. [15,16] named

the Bejan number,

Be ¼ DPD2
0

al
ð11Þ

The flow boundary conditions are indicated in the lower

part of Fig. 1: no slip and no penetration on the plate

surfaces; ~P ¼ 1, o~u=o~x ¼ ~v ¼ 0 at the inlet of the compu-

tational plane; ~P ¼ 0 and oð~u;~vÞ=o~x ¼ 0 at the exit of the

computational domain; free slip and no penetration

(o~u=o~x ¼ ~v ¼ 0) on the horizontal surfaces of the up-

stream and downstream sections of the computational

domain. The thermal boundary conditions are: ~T ¼ 1

on the cylindrical surfaces, and ~T ¼ 0 on the inlet plane

of the computational domain. The remaining portions

of the computational domain are adiabatic.

The spacing between cylinders varies. We are inter-

ested in the geometric arrangement that maximizes the



Fig. 2. The maximization of heat transfer density in the

assembly of Fig. 1.
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overall heat transfer between the cylinder and the sur-

rounding fluids. The dimensionless quantity that is used

to determine this quantity is the dimensionless heat

transfer rate density. The heat transfer density rate is

q000 = q 0/[D0(D0 + S0)], where q 0 is the total heat transfer

rate integrated over the surface of one cylinder. The cor-

responding q000 in the dimensionless form is

~q ¼ q0
D0ðD0 þ S0ÞkðT w � T 0Þ

ð12Þ

Eqs. (8)–(10) were solved using a finite-element ode with

four-node quadrilateral elements and linear interpola-

tion functions [17]. The explicit appearance of the pres-

sure in the momentum equation was eliminated by using

the penalty function method. In all the simulations the

compressibility parameter was fixed at 10�8. For more

details see Ref. [18]. The nonlinear equations resulting

from the Galerkin finite-element discretization of Eqs.

(8)–(10) were solved using successive substitution fol-

lowed by a quasi-Newton method. The convergence cri-

teria were

uðkÞ � uðk�1Þ
�� ��

ukk k 6 10�4 and
RðuðkÞÞ

�� ��
R0k k 6 10�4 ð13Þ

in which R(u) is the residual vector, u is the complete

solution vector, k is the iteration counter, and k Æ k is

the Euclidian norm. The grid was nonuniform in both

~x and ~y directions. The grid was double graded in the

~y direction so as to put more nodes near the cylinder sur-

faces to capture more accurately the behavior in the

boundary layers. The grid varied from one geometric

configuration to another. Grid refinement tests per-

formed in range (103 6 Be 6 106, Pr = 0.72) indicated

that the solutions were insensitive to further grid dou-

bling in ~x and ~y when 40 nodes per D0 were used in both

~x and ~y directions. Table 1 shows how grid independence

was achieved. Another set of accuracy tests showed that

when Lu/D0 = 0.8 and Ld/D0 = 1.6, the channel heat

transfer rate varied less than 1% after the doubling of

the upstream and downstream lengths. Based on these

tests, the numerical results discussed in this paper we ob-

tained with grids of 40 nodes per D0, and with eLu ¼ 0:8
and eLd ¼ 1:6.
Table 1

Grid refinement tests for eS 0 ¼ 0:3, Be = 103, Pr = 0.72, for

calculation of ~q

Number of nodes per

D0 in the ~x and ~y directions

~q ~qi�~qiþ1

~qi

��� ���
10 6.376 –

20 6.482 0.0167

40 6.529 0.0073

80 6.544 0.0023
Fig. 3. The optimal spacing and maximal heat transfer density

for the row of cylinders shown in Fig. 1.



T. Bello-Ochende, A. Bejan / International Journal of Heat and Mass Transfer 48 (2005) 1373–1383 1377
3. Optimal spacing

The flow and temperature fields were simulated in a

large number of configurations, in order to determine

the effect of spacing on heat transfer density. Fig. 2

shows that the heat transfer density is maximal when

S0 has an optimal value, which decreases as the pressure

drop number Be increases. The optimal spacings deter-

mined in this manner are summarized in Fig. 3, in linear

and logarithmic form. The later shows that for Pr = 0.72

they are correlated within 0.15% by the power law

S0;opt

D0

¼ 1:41Be�0:23 ð14Þ

The corresponding heat transfer density maxima are

also reported in Fig. 3. They are correlated within 0.1%

by the expression

~qm ¼ 1:1Be0:26 ð15Þ

These results are in agreement with the constructal

method (Ref. [1], Chapter 3), according to which maxi-

mal heat transfer density means �optimal packing� such
that flow regions that do not contribute to global perfor-

mance are eliminated. This means that optimal packing

in Fig. 1 is achieved when the cylinders are brought close
Fig. 4. Row of cylinders with two s
enough so that their thermal boundary layers just touch.

The thermal boundary layer of a cylinder with laminar

flow and Pr > 1 has a thickness of order

dT 	 D0Re�1=2Pr�1=3 ð16Þ

The velocity scale V that appears in the Reynolds num-

ber Re = VD0/m is determined from the longitudinal

force balance on the control volume that contains a sin-

gle cylinder,

DPS0 	 F ð17Þ

where F is the drag force,

F 	 sD0S0 ð18Þ

where the shear stress scale is s 	 lV/S0. Combining

Eqs. (17) and (18) we find

Re 	 Be2=3

Pr8=9
ð19Þ

The range 10 < Re < 103 corresponds to the range

103 < Be < 106 used in this paper. By Setting dT 	 S0

in Eq. (16) and using Eq. (19), we find that

eS 0 	 Be�1=3Pr�1=9 ð20Þ

which for Pr 	 1 anticipates very well the numerical cor-

relation (14).
izes (two degrees of freedom).
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The heat transfer rate density (15) can be anticipated

based on the same scaling argument. The cylinder heat

flux scale is q00 	 k(Tw � T0)/dT, where dT 	 S0 	 D0
eS 0.

Because S0 < D0, cf. Eq. (20) for Be � 1, the heat trans-

fer rate density is q000 	 q00/D0, such that the dimension-

less heat transfer rate density becomes

~q 	 q000D2
0

kðT w � T 0Þ
	 Be1=3Pr1=9 ð21Þ

This prediction agrees very well with the numerical

correlation (15) when Pr 	 1.
Fig. 6. The optimal spacing, optimal diameter ratio eD1 and

maximal heat transfer density for the assembly shown in Fig. 4.
4. Cylinders with two sizes

In the second phase of this study we considered the

more complex structure shown in Fig. 4. Cylinders of

smaller diameter (D1) were inserted in the entrance (con-

verging) regions of the channels formed between the ori-

ginal cylinders. This structural change brings with it one

more degree of freedom: the small-cylinder diametereD1 ¼ D0=D1. The flow configuration has two degrees

of freedom, which are represented by eD1 and the origi-

nal spacing eS 0.

The numerical procedure for flow simulation and

geometry optimization was the same as the procedure

tested in Section 2. As shown in the example of Fig. 5,

the pressure drop number Be was fixed, and many con-

figurations (eD1, eS 0) were simulated in search for the con-

figuration with the highest heat transfer density ~q. This
procedure was then repeated over the range

103 6 Be 6 106 and Pr = 0.72.

The results are condensed in linear and logarithmic

form in Fig. 6, which shows how the optimized configu-

ration and the maximized performance vary with the
Fig. 5. The maximization of heat transfer density in the

assembly of Fig. 4.
pressure drop number. The optimal small diameter is

independent of Be: the optimal ratio D1/D0 is practically

constant and equal to 0.25. The optimal spacing de-

creases as Be increases. This behavior is consistent with

what we saw in Fig. 3, however the eS 0;opt values of Fig. 6

are consistently larger than the optimal spacings re-

ported in Fig. 3. The optimal spacing is larger when a

smaller cylinder is placed in the mouth of the channel.

The data of Figs. 3 and 6 show that the ratio of the opti-

mized spacings is practically independent of Be,

eS 0;optðFig. 6ÞeS 0;optðFig. 3Þ
ffi 1:75 ð22Þ

The maximized heat transfer density shown in Fig. 6

increases with Be. This trend is qualitatively in agree-

ment with the results obtained for single-scale structures

(Fig. 3), however, in Fig. 6 the effect of Be is stronger.

The subscript 2m is a reminder that ~q was maximized

with respect to two geometric parameters, eS 0 and eD1.
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In place of Eq. (15), the ~q2m data of Fig. 6 are correlated

within 0.06% by the power law ~q2m ¼ 0:96Be0.3. It can be

verified that ~q2m ðFig. 6Þ > ~qm (Fig. 3), which means

that the use of two scales (D0,D1) brings about an in-

crease in heat transfer rate density. We return to this

observation in the discussion of Fig. 12.
5. Cylinders with three sizes

In the next step of this sequence of refining the flow

structure, we inserted even smaller cylinders (D2) in the

entrance regions formed between the D0 and D1 cylin-

ders. This new configuration is shown in Fig. 7. It has

four degrees of freedom, eS 0, eD1, eD2 and the new spacingeS 2, which is the new center-to-center spacing between

the D1 and D2 cylinders. The numerical procedure was

the same as in the simulations and optimizations de-

scribed in Sections 3 and 4. One difference was that

the number of nodes per length scale D0 was increased

to 80, to capture well the development of the boundary

layer around the smallest cylinder.

The search for the optimal flow configuration was

conducted at fixed Pr and Be, and was organized in a se-
Fig. 7. Row of cylinders with three s
quence for nested optimization loops. The innermost

loop (level I) is illustrated in Fig. 8, where three of the

geometric parameters were fixed (eS 0 ,eD1, eD2), and the

fourth (eS 2) was optimized such that ~q reached its maxi-

mum value, ~qm.
At level II, the procedure of level I was repeated for

several values of eD2 until the family of calculated ~q max-

ima revealed a maximum value with respect to having

varied eS 2 and eD2. This second level is illustrated by

the constant-eD2 curves shown in Fig. 8.

The optimization results obtained at the end of levels

I and II are summarized in Fig. 9, where the notation

~q2m is a reminder that the reported heat transfer density

was maximized with respect to two geometric parame-

ters, eS 2 and eD2. Fig. 9 shows that ~q2m can be maximized

with respect to the third free parameter, eS 0. This optimi-

zation constitutes level III, and its chief result—the heat

transfer density maximum ~q3m—is reported in Fig. 10.

Level IV is the maximization of ~q3m with respect to

fourth free parameter, eD1. Fig. 10 shows that ~q3m
reaches a maximum at a distinct eD1 value, which com-

pletes the description of the optimal flow configuration

for the specified Be and Pr values. These final results

are reported in Fig. 11, which summarizes the rest and
izes (four degrees of freedom).



Fig. 8. The maximization of heat transfer density with respect

to eS 2 and eD2 in the configuration of Fig. 7.

Fig. 9. The maximization of heat transfer density with respect

to eS 2, eD2 and eS0 in the configuration of Fig. 7.

Fig. 10. The maximization of heat transfer density with respect

to eS 2, eS0, eD2 and eD1 in the configuration of Fig. 7.

Fig. 11. The optimal spacings and diameters, and the maximal

heat transfer density for the assembly shown in Fig. 7.
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most voluminous part of the numerical work: the repeat

of the 4-level optimization for several Be values in the

range 103 6 Be 6 106.

The trends revealed by Fig. 11 are similar to what we

saw in Fig. 6, however, the differences are both interest-

ing and important. One difference is that when a new

cylinder is placed in the space between two older cylin-

ders, the optimized spacing between the older cylinders

increases to accommodate the new cylinder. More ex-

actly, the eS 0;opt spacing increases by the factor

eS 0;optðFig. 11ÞeS 0;optðFig. 6Þ
ffi 1:68 ð23Þ
which is practically independent of Be. Another impor-

tant change is that the maximized heat transfer rate den-

sity, which is correlated by ~q4m ffi 0:91Be0.33, is larger

than all the heat transfer rate densities calculated previ-

ously. This finding is summarized in Fig. 12, which

shows that the maximized heat transfer rate density in-

creases as the number of geometric degrees of freedom

increases. Fig. 12 also shows that diminishing returns

(smaller ~q increases) are registered as the flow configura-

tion acquires more length scales. Although in accor-

dance with constructal theory the optimization of

complexity is beneficial, the cost of design and construc-

tion puts an end to the multi-scale optimization

sequence.



Fig. 12. Diminishing returns: the effect of the increasing

complexity on the maximum heat transfer rate density.
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6. Conclusions

In this paper we illustrated a new approach to the

conceptual design of convective structures with maximal

heat transfer density: the use of multiple length scales

that are distributed nonuniformly through the available

volume. For illustration, we used parallel cylinders in

cross-flow forced convection. We installed new cylinders

with progressively smaller diameters in the entrance

wedges between older cylinders, where the flow regions

were inhabited by fluid that had not been used for heat

transfer.
Fig. 13. The effect of increasing complexity and pressure drop num

(b) Be = 106.
Three classes of configurations were optimized and

reported: cylinders with one, two and three sizes, which

resided in flow structures with one, two and four degrees

of freedom. The maximized heat transfer density in-

creases from one class to the next, however, diminishing

returns are noticed when the number of degrees of free-

dom increases from two to four. The optimized cylinder

diameters are robust, i.e., relatively insensitive to

changes in the number of scales and the flow regime

(Be).

In Fig. 13(a) and (b), we drew to scale the optimized

flow architectures with one, two and four freely varying

length scales, cf. Figs. 1, 4 and 7, respectively. Read

from left to right, the figure shows how the spacing be-

tween older cylinders increases when new cylinders are

placed in the existing gaps. Read from Fig. 13(a) and

(b), the montage shows that when the flow becomes fas-

ter the spacings become noticeably smaller, while the

cylinder diameters do not change much. This last obser-

vation is relevant not only in heat exchanger design but

also in animal design. A morphing multi-scale structure

is robust when it can perform optimally under different

flow conditions (slow, fast) by using the same solid

parts. It is a lot easier for the structure to adapt itself

by optimizing its fluid spacings, as opposed to redesign-

ing its solid components. One example from the animal

realm is the multi-channel organization of a swarm of

bees [19]. The solid components (the bees) are perma-

nent features, while the airways change with the inlet

temperature of the ambient air that cools the swarm

(see also Ref. [1], pp. 44–45).

Another way to summarize the evolution of the opti-

mized flow architecture as the number of scales and the
ber (Be) on the optimized multi-scale structure: (a) Be = 103;



Fig. 14. The solidity of the optimized multi-scale structure.
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pressure drop change, is to monitor the changes in the

use of solid (cylinder) material. In each of Figs. 1, 4

and 7, the available flow space is a rectangle of size

D0 · /H, where H is much greater than D0. Both H

and D0 are fixed. The relative amount of cylinder mate-

rial is expressed by the solidity of the assembly, 1 � /,
where / is the porosity: / = (fluid space)/D0H. Fig. 14

shows that the solidity of the optimized structure de-

creases as the number of degrees of freedom increases,

and as Be decreases. This global indicator of the use of

solid material suggests another way of reporting the glo-

bal heat transfer performance of the optimized struc-

tures. Instead of the total heat transfer rate installed in

the available volume, ~q, we may report the total heat

transfer rate associated with the installed solid. This

new measure is proportional to ~qð1� /Þ, which is shown

now in Fig. 15. As in Fig. 12, performance increases as
Fig. 15. The maximized heat transfer rate per unit of solid

volume.
the number of degrees of freedom of the optimized

structure increases, however, diminishing returns are

not as evident as in Fig. 12. In conclusion, if we account

for the use of solid material, the concept of multi-scale

cylinders in cross-flow is even more promising.

In this paper we considered only the laminar range of

the multi-scale cylinders optimization problem. We have

every reason to expect that the design concept proposed

in this paper can also be used when the flow is turbulent.

This extension deserves to be explored in future

research.
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